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ON GOURSAT NORMAL FORMS, PROLONGATIONS, AND 
CONTROL SYSTEMS 

D. TILBURY AND S. SASTRY 
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ABSTRACT. This paper presents the method of exterior differential systems for 
analyzing nonlinear systems. The Goursat normal form is presented, and conditions 
are given for converting PfafEan systems into this normal form. Since the Brunovsky 
normal form is a special case of the Goursat normal form, we also show how the 
exact linearization conditions for control systems can be restated in the language 
of Pfaffian systems. In addition, we give new conditions for converting Pfaffian 
systems into Goursat form after prolongation, and for linearizing control systems 
using dynamic extension. 

Several examples of mobile robots are examined/and it is shown that for some 
kinematic arrangements, a prolongation corresponding to a dynamic state feedback 
is needed to transform the corresponding Pfaffian system into Goursat form. 

This research was supported in part by the NSF under grant IRI-9014490 and by the ARO under 
grant FT-DAAL03. D. Tilbury would also like to acknowledge an AT&T Ph.D. Fellowship for 
financial support of this work. 



2 TILBURY AND SASTRY 

1. INTRODUCTION 

There has been a great deal of interest in the use of exterior differential systems 
for analyzing nonlinear control systems. We bring together here some of the results 
which have been recently published as well as add some of our own contributions to 
this area. We show that all of the main results in exact linearization of nonlinear 
systems can be restated in terms of exterior differential systems, and in addition, we 
present a new set of sufficient conditions for linearization by dynamic extension. 

In this paper, we will only make use of a special type of exterior differential system 
called a Pfaffian system, and all of our definitions and results are specific to this case. 
Loosely speaking, a Pfaffian system is represented by a codistribution of one-forms 

««defined-on the state space, which we will assume to be a connected manifold. Th 
one-forms may represent constraints on the system velocities, as in the case of mobile 
robots where the wheels roll without slipping. A control system with state x € Rn, 
input u € Rm of the form x = f(x, u) can also be written as a Pfaffian system, with 
the constraints defined as the one-forms a' = dx{ — /'(x,u)<ft on Rn+m+1. Although 
special care must be taken for control systems to treat time differently from the state 
and input variables, we will show that the main results on transforming Pfaffian 
systems into normal forms will carry over into the special case of control systems. 

For mechanical systems with linear velocity constraints, such as mobile robots with 
wheels that roll without slipping, exterior differential systems are the most appro- 
priate method for analysis. Using methods from exterior differential systems, we 
can, under certain conditions, transform the Pfaffian system defined by the rolling 
constraints into a normal form and, in the new coordinates, easily find solution tra- 
jectories for the system. 

The outline of this paper is as follows. First, we present some background mate- 
rial on exterior algebra and Pfaffian systems. We then give the definitions for the 
Goursat normal form and extended Goursat normal form. After stating necessary 
and sufficient conditions for converting Pfaffian systems into these normal forms, we 
show that several examples of mobile robot systems satisfy these conditions. We then 
consider systems which do not satisfy the conditions for this conversion, and present 
the concept of prolongation of a Pfaffian system. We give sufficient conditions for 
converting a Pfaffian system to extended Goursat normal form using a specific type of 
prolongation, and we show an example of a mobile robot system which satisfies these 
conditions. Finally, we turn our attention to control systems, expressed as Pfaffian 
systems. Since the Brunbvsky form is a special case of Goursat normal form, all of 
the results for converting Pfaffian systems to Goursat form can be specialized to give 
conditions for converting control systems to Brunovsky linear form. We show that 
the special type of prolongation we proposed in this paper is the dual of dynamic 
extension, or adding integrators to some of the input channels. Thus our theorem for 
converting Pfaffian systems to extended Goursat normal form using prolongations can 
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be specialized to give sufficient conditions for linearizing control systems by dynamic 
extension. 

2. EXTERIOR ALGEBRA AND PFAFFIAN SYSTEMS 

We give a brief overview of some of the definitions of exterior algebra and Pfaffian 
systems that we will use in this paper. The theory of exterior differential systems 
is powerful enough to analyze solutions of systems of partial differential equations; 
however, we will restrict ourselves in this paper to systems of first-order ordinary 
differential equations. We encourage the interested reader to consult the monograph 
by Bryant et. al. [1], from which most of this introductory material was taken, for 
more details. 

A real vector space V or its dual (covector) space V generates an exterior algebra 
with the exterior or wedge product defined by 

a Aß   =   -ß/\a 

OAü   =   0 
act A (bß + cy)   =   (ab)a A ß + (ac)a A 7 

for all a,ß € V(V*), a,b,c€ ft. The wedge product of two vectors is called a two- 
vector. We define A2(V) as the space of two-vectors. We can similarly build up higher 
vectors and define A*(V) as the space of all k-vectors. For completeness, we define 
A°(V) = R and A^V) = V. The dimension of A*(V) is (*). From the axioms, it 

follows that Ak(V) is empty for k > n. 
The exterior algebra over V is a graded algebra, 

A(V) = A°(V) © Al(V) 0 • • • ® An(V) 

Any element A € A(V) can be written uniquely as 

A = A0 + Xi + • • • + An 

where A< € A*'(V) for i = 1,.... , n. 
Now, consider a differentiable manifold M of dimension n and its cotangent bundle 

T*M. We construct the bundle A{T*M) whose fibers are the exterior algebra of T*M, 
that is: 

A(T;M) = A°(r;) ® Aa(r;) ® A2(r;) © • • • e An(r;) 
The bundle A(T'M) has AP(T*M) as sub-bundles. A section of the bundle 

AP(T*M) = U Ap(r;M) 

over M is called an exterior differential form of degree p or simply a p-form. 
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For local coordinates on M denoted by x = (xu... ,xn) , a local basis for TXM is: 

Xdxl
1'"'dxn

i' 
We denote its dual basis on T*M as 

{dxi,... ,dxn) 

defined by 

In terms of these local coordinates, a p-form u> can be written as 

u = ]C "'ü •••«*(*) rfx«! A '''A rfz»V   «l < »i <; • • < *p_ 
where the coefficient functions «><,„.,• (x) are smooth functions on Af. 

We will use the notation tip(M) to mean the module (over the ring of smooth 
functions) of all smooth sections of AP(T'M), and £J(M) = ® QP(M) as the module 
of forms on M. 

We begin by considering a codistribution / on M, spanned by s one-forms, that is 

/ = span{o1,... ,a*} 

where a' is in fi^M) for t = 1,... ,s. 

Definition 1. Pfaffian Systems. 
On a manifold of dimension n, a Pfaffian system is the smallest ideal J C to(M), 
generated by a codistribution / of one-forms spanned by {a1,... , a*} which is closed 
under wedge products. 

Any element of X can be written in the form: 

where 0* is any element in Q(M). Throughout the course of this paper we will 
deliberately confuse the notation and refer to the codistribution / as the Pfaffian 
system. 

The dimension of a Pfaffian system is defined to be s, the number of independent 
one-forms which generate it. Any n — s linearly independent one-forms which are 
independent of / form a complement to /. The codimension 6i I is n — s. 

An integral curve for a Pfaffian system is a curve c(t): (—c, c) —» M which satisfies 
the constraints, that is, c*(a') = 0 for all a* € /. Here the notation c*(a') is taken 
to mean (o:',^)). 

A (local) independence condition for a Pfaffian system is a one-form r which does 
not vanish on integral curves, that is C"(T) ^ 0. We add the additional condition that 
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T be integrable, so that our Pfaffian systems will correspond to systems of first-order 
ordinary differential equations. 

We will need the notion of congruence modulo a Pfaffian system. For I = {a1,... , a*}, 
we say that n = ( mod I if 

^e + E^Aa« 

for some forms 9l in Q(M). 

Definition 2. Exterior Derivative. 
The exterior derivative is defined as the unique map d : Qk(M) -► ftfc+1(M) which 
satisfies the following properties: 

.     (1) For/€ft°(M), 

df = %Ldxi-r--- + -Jr-dxn, 
axi oxn 

relative to a local coordinate chart, or the usual gradient. 
(2) FovaeÜT,ßeÜ3, 

d(aAß) = daAß + (-l)ra A dß. 

(3) d2 = 0. 

Definition 3. Derived Flag. 
Given a Pfaffian system I = {a1,... ,a"}, the derived flag is defined to be the nested 
chain of codistributions given by 7^°^ = I and 

/(*+i) = {a, e I(k) : dw = 0    mod /<*>} 

The construction is assumed to terminate at some N, when J(iV> = 7(N+1). The 
derived flag is then defined to be the sequence of nested codistributions, 

I = J(0) D J(1) 3 • • • D I{N) 

We will assume that the dimension of 1^ is well-defined for all k. 

Remark 1 (Maximally Nonholonomic). The last member of the chain of codistribu- 
tions, J(NV is called the bottom derived system. Since jW = j(*+1>, we have that 
dw = 0 mod J(N) for all u> € 7(7V), and by the Frobenius theorem, the bottom de- 
rived system is integrable. That is, there there exist functions hi,... , hg such that 
/(*) = {dhi,... ,dhq). Solution trajectories of I are then constrained to lie on level 
surfaces of h. 

A Pfaffian system is said to be nonholonomic if J(1) is a proper subset of I. We 
will only work with systems which are maximally nonholonomic, that is, with bottom 
derived system 1^ = {0}. 

For reference, we state here a variant of the familiar Frobenius theorem: 
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Theorem 1. Frobenius [1]. 
Let {w1,... ,<JJ

P
} be a set of linearly independent one-forms, and /i,... ,/, a set of 

functions whose differentials are linearly independent of each other and of the u* 's. 

du* A u1 A • • • A u? A dfx A • • • A df„ = 0 

for i = 1,... ,p, then there exist coordinate functions Z\,... ,zp and coefficient func- 
tions a,j,fc,j such that the one-forms u* can be written as: 

p « 

The proof follows from the standard Frobenius theorem and the fact that the 
codistribution {w1,... ,vp,dfi,... ,dfg} is integrable. 

3. GOURSAT NORMAL FORMS 

A great deal of work has been done on transforming Pfaffian systems into normal 
forms. Of special interest to us in this paper is the Goursat normal form, originally 
proposed by Goursat for Pfaffian systems of codimension two, which has the property 
that all its integral curves can be expressed in terms of two arbitrary functions. We 
will also examine an extended Goursat normal form for Pfaffian systems of codimen- 
sion k > 2, for which solution trajectories can be expressed in terms of k arbitrary 
functions. 

Definition 4. Goursat Normal Form. 
A codimension two Pfaffian system / on Rn with generators of the form 

/ = span{cfen - Zn^dzi,... ,dz3 — z2dzi}. 

is said to be in Goursat Normal Form. 

If we define ^(z) = dzn - zn.xdzu... ,wn-2(z) = dz3 - z2dzx, then the derived 
flag of I is given by 

J<°)=    {u/\    a;2,    •-.,   a;""3,    to""2} 
/<*>=    {a;1,    u>\   -..,   a,»"3} 

/<n~4)=    {v\   w2} 
/(«-3)=   {u,1} 
j(»-2)=    {0} 

From the form of the Pfaffian system in the z coordinates, it follows that inte- 
gral curves of the system are unconstrained in their Zi,zn coordinates alone. Once 
z\{t),zn{t) are specified as functions of some parameter t, the other coordinates are 
determined as functions of Zi(t)tzn(t) and finitely many of their derivatives.   The 
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following classical theorem gives necessary and sufficient conditions for converting a 
Pfaffian system into Goursat normal form: 

Theorem 2. Goursat Normal Form [1]. 
A Pfaffian system I of codimension two on Rn has a set of generators which are in 
Goursat normal form if and only if there exists a basis set of forms {a1,... ,an"2} 
for I and a one-form ir satisfying the congruences: 

da'   =   —a,+1Ax     mod a1,..., a'    t'=l,...,n — 3 
dan~2   ■£   0 mod/ (1) 

In [10] we showed that the Pfaffian system associated with the system of a car 
towing n trailers, generated byq^"*coSsfrainTsthat eachaxle of wheels roll without 
slipping, satisfied the conditions for conversion to Goursat normal form. This was 
a system of codimension two, corresponding to the fact that the linear and angular 
velocities of the front car are the inputs, and thus freely specifiable. 

In order to consider Pfaffian systems associated with mobile robots such as the 
firetruck [3, 9] or the multi-steering multi-trailer system [11] we need to work with 
systems of codimension greater than two. We have the following definition: 

• " 
Definition 5. Extended Goursat Normal Form. 
A Pfaffian system I on Rn+m+1 of codimension m + 1 is in extended Goursat normal 
form if it is generated by n constraints of the form: 

/ = span{dz? — z\^dz° : i = 1,... ,m; i = 1,... ,Sj}, (2) 

We note that this is a direct extension of the Goursat normal form, and all solution 
trajectories of (2) are determined by the m + 1 functions z°(t),z](t),... ,z™{t) and 
their derivatives with respect to the parameter t. 

There are conditions due to Murray [6] for converting a Pfaffian system to extended 
Goursat normal form. We restate and prove this with the additional condition (cor- 
rection) that it needs to be integrable: 

Theorem 3. Extended Goursat Normal Form [6]. 
Let I be a Pfaffian system of codimension m + 1. If there exists a set of generators 
{aj : j = 1,... ,m; i = 1,... ,«,•} for I and an integrable one-form IT such that for 
all j, 

da{   =   -c4+1 A 7T     mod /(*>-•')   i = 1,... ySj - 1 ,„v 
do?t)   ■£   0 mod/ {6) 

then there exists a set of coordinates z such that I is in Goursat normal form, 

I = {dzi-z3
i+1dz0:j = l,... ,m;i = l,... ,Sj}. 
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Proof. If the Pfaffian system is already in extended Goursat normal form, the con- 
gruences are satisfied with * — dz° and the basis of constraints a*- — dz\ — z3

i+1dz°. 
Now assume that we have found a basis of constraints for I which satisfies the 

congruences (3). It is easily checked that this basis is adapted to the derived flag, 
that is: 

/(*> = {a?':j = l,...,m;    i = 1,... ,«,- - k} 
We will now construct the coordinates z which comprise the Goursat normal form. 

Since n is integrable, any first integral of x can be used for the coordinate z°. If 
necessary, we can rescale the constraints of so that the congruences (3) are satisfied 
with dz°: 

d<4 s -c4+1 A dz°   mod/<•>-•">   t = l,...,5i-l 
and we can renumber the constraints so that Si > s2 > • • • > sm. 

Now consider the last nontrivial derived^ystem, I^'1 -1). The one-forms {o},... , oj } 
form a basis for this codistribution, where si = s2 = ••-= sTl. From the fact that 

da{ = -cP2 A dz°   mod I^~l\ 

it follows that the one-forms a\,... ,0? satisfy the Frobenius condition: 

da{ A a\ A • • • A aj» A dz° - 0 

and thus, by the Frobenius theorem, we can find coordinates z\,... ,z? such that 

+ Bdz° 

We note that the matrix A must be nonsingular, since the o^'s are a basis for /("»-1) 
and they are independent of dz°. Therefore, we can define a new basis öj as: 

M1 " dz\ ' 
i = A • 

[<*? \ dzl1 

"fiJl [«? I " dz\ ' 
-.^A-1 

• = • 

[*v J [Qi\ dzl' 
+ {A-*B)dz<- 

and we define the coordinates z{ := (A~lB)j, so that the one-forms ö{ have the form 

c{ = dzi-zidz0 

for/=l,... ,n. 
By the proof of the standard Goursat theorem, all of the coordinates in the jth 

tower can be found from z\ and z°, thus by the above procedure, we have effectively 
found all the coordinates in the first t\ towers. 

To find the coordinates for the other towers, we need to look at the lowest derived 
systems in which they appear. The coordinates for the longest towers were found 
first, next we will find those for the next-longest tower(s). 
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Consider the smallest integer k such that dim /(•»-*> > kr^, more towers will 
appear at this level. We know that a basis for J^*1"*) is 

where of = dzf - af+i^0 f°r J = 1,-• • >fi, as found in the first step, and a{ for 
j = n + 1,... ,r2 are the one-forms we started with, which satisfy the congruences 
(3) and are adapted to the derived flag. The lengths of these towers are sr,+i = 
• • • Sri+rj = «l - k + 1. For notational convenience, we will define z3

(h) := (z{,... , z{) 
forj = l,... ,»-!. . 

By the Goursat congruences, we know that da{ = —0& A dz° mod J1*1- ' for 
j = rx -f 1,... , r*i -f r2, thus the Frobenius condition 

da{ A a?+l A • • • A a\i+ri A dz\ A • • • A dz\ A • • • A dz? A • • • A <fc? A <fe° = 0 

is satisfied for j = rx + 1,... ,ri + r2. Using the Frobenius theorem, we can find new 
coordinates, z\1+1,... , zi"1+r2, such that 

[ a?+1 1 [ dz?+1 1 
: = A '. 

. Qi+ra . dz?+T> _ 

+ Bdz° + C 

dz(k) "• 

dz\h J 

Since the congruences are only defined up to mod j(*1-fc), we can eliminate the last 
group of terms (those multiplied by the matrix C) by adding in the appropriate 
multiples of ä{ = dz\ - zj+1dz° for j = 1,... ,n and i - 1,... , k. This will change 
the B matrix, and we will be left with 

+ Bdz° 

Again, we note that A must be nonsingular because the oj's are linearly independent 
mod J(4l-fc) and also independent of dz°, and so we can define 

dz?+1 

+ (A^fydz0 = 

r a?*1 1 \ dz?*1 1 
: = A • 

aj,+r2 dz[i+r3 . 

r äi"i+l i \ &?+1 ' 
i :=A-' • 

ön+r2 ^ 
.&i+T3 . dz? +r2 

+ (A~lB)dz0 

We then define the coordinates z{ := (A~lB)j for j = ri H-1,... ,ra + r2 so that 
ä{ = dz{ — z{dz0. Again, by the standard Goursat theorem, all of the coordinates in 
the towers n + 1,... , rx + r2 are now defined. 

The coordinates for the rest of the towers are defined in a manner exactly analogous 
to those of the second-longest tower. 

If it is not integrable, then We cannot use the Frobenius theorem to find the coor- 
dinates. In the special case where sx > s2, that is, there is only one tower which is 
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longest, it can be shown that if there exists any v which satisfies the congruences, 
then there also exists an integrable ■*' which also satisfies the congruences (with a 
rescaling of the basis forms), see [2, 6]. However, if s\ = «2» or there are at least two 
towers which are longest, this is no longer true. Thus, we need the assumption that 
ir is integrable.   D 

If I can be converted to extended Goursat normal form, then the derived flag of I 
has the structure: 

1 = 
/<!) = 

* * *» 

j » "1,-1. 
"1» " " ' > 

> 

/vTO       . • 
"1   1 
rttm 

.         /vTO 

<} 

J('m-l)  _ {«!, » a<l-«m+l' > "?} 

j(*i-2) = 

J(*l-1)  _ 

{0} 

a\} 

where the forms in each level have been arranged to show the different "towers" which 
result. The superscripts j indicate the tower to which each form belongs, and the 
subscripts i index the position of the form within the jth tower. There are Sj forms 
in the jth tower. An algorithm for converting systems to extended Goursat normal 
form is given in [2]. 

We also give another version of this theorem, which is easier to check, since it 
does not require finding a basis which satisfies the congruences but only one which 
is adapted to the derived flag. We also give the proof for this theorem, since only a 
special case is proved in [7]. 

Theorem 4. Extended Goursat Normal Form [7]. 
A Pfaffian system I of codimension m + 1 on Rn+m+1 can be converted to Goursat 
normal form if and only if there exists a one-form % such that {I^k\ir} is integrable 
fork = 0,... ,N-1. 

Proof The only if part is easily shown by taking it = dz° and noting that 

J«   =   {<fc/- *f_,<fc° :   j = l,...,m]i = k + l,...,Sj} 
{/<*),»}   =   {dzi,dz°: j = l,...,m;t = * + l,...,Si}, 

which is integrable. 
For the if part, assume that such a ir exists. First, we find the derived flag of the 

system, J =: J(0) D J(1) D ••• D IM = {0}. We will iteratively construct a basis 
which is adapted to the derived flag and which satisfies the Goursat congruences (3). 

We claim that the lengths of each tower are determined from the dimensions of 
the derived flag. Indeed, the longest tower of forms has length «j. If the dimension 
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of 7^1-1) is ri, then there are ri towers which each have length s\] and we have 
Sl = s2 = -•• = sri. Now, if the dimension of j(*1-2) is 2ri + r2, then there are r2 

towers with length Si — 1, and we have sn+i = • • • = sri+T2 = «1 — 1. We find each 
Sj similarly. 

We note here that a TT which satisfies the conditions must be in the complement 
of I, for if 7T were in /, then {/,*} integrable means that I is integrable, and this 
contradicts our assumption that I is maximally nonholonomic, that is 7(N) = {0} for 
some N. 

Consider the last nontrivial derived system, J(*1-1). Let {a\,... ,0?} be a basis 
for J(*1-1). The definition of the derived flag, specifically IM = {0}, implies that 

da{ ■£ 0 mod I^-V   j = 1,... ,ra (4) 

Also, the assumption that {I^k\r} is integrable gives us 

da{ = 0 mod {I^~l\n}   j = 1,... ,n (5) 

combining equations (4) and (5), we have that 

da{ = 7T A ßj  mod I^~^   j = 1,... , ra (6) 

for some ßj ^ 0  mod J^»-1). 
Now, we also have from the definition of the derived flag that 

da{ = 0    mod/**1"2*   j = l,...,n 

which combined with (6) gives us that ß' is in /(*1-2). 
Claim, ß1,... ,ßri are linearly independent mod J**1-1). 
Proof of Claim. The proof is by contradiction. Suppose there exists some combination 
of the /?J's, say 

ß = biß1 + • • • + bn ßri = 0   mod /to"1* 

with not all of the 6/s equal to zero. Consider a = bia\ + • • • + bTla
r^. We must 

have a ^ 0 because the a{ are a basis for I^Sl~lK The exterior derivative of o can be 
found by the product rule, 

da   =   j^bjdci+jßdbjAoi- 

=   Jt,bj(**F) mod/*'1"1* 

=   * A (£>/?>') mod/*'1"1* 

=   0 mod/*'1"1* 
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which implies that a is in I^\ However, this contradicts our assumption that 
J(»i) = {0}. Thus the ßj,s are linearly independent mod /('1_1), and the claim is 
proven. 

Define c?2 := ß1 for j = 1,... ,n. Note that these basis elements satisfy the first 
level of Goursat congruences, that is: 

da{ = -o{ A 7T   mod /<->_1)   j = 1,... , n 

If the dimension of j(*i-2) is greater than 2ru then choose one-forms aj1+1,... , aj1+r* 
such that that 

\«i,... ,aj ,a2,... ,a2 , a^     ,...,aj      j 

is a basis for /(4»~2). 
For the induction step, we assume that we have a basis for /(*'), 

{<*\,... ,01^0%,... ,a2
k3,... tal,... ,ac

kJ 

which satisfies the Goursat congruences up to this level: 

<fo£ = -oi+iA7r    mod/<•'-*>   j = l,...,c;    k = 1,... ,*,• - 1 

Note we have assumed that c towers of forms have appeared in jW. Consider only 
the last form in each tower that appears in J(,), that is a{ ,j = 1,... ,c. By the 

construction of this basis (or from the Goursat congruences), we have that a{. is in 
JW but is not in J('+1>, thus 

da{.£0   mod/(,)   j = l,...,c 

The assumption that {/(,),7r} is integrable assures us that 

dcPk. = 0   mod {/W,TT}   j = 1,... ,c 

thus we have that «?o^ must be a multiple of r mod /W, 

da{.=irAß>    mod J(,)   j = l,...,c 

for some ßJ ^ 0 mod /W. We also have, from the fact that a£ is in /<•) and the 
definition of the derived flag, that 

do?k.=0   mod J*-1)   j = l,...,c 

which implies that ß> € 7(,-1). By a similar argument to the claim above, we can 
show that the ßj,s are independent mod /W. We define oj +, = ß\ and thus 

{<*!>••• ,"l1+i, <*?,••• ,«4+!,... ,aj,... ,G£C+1} 
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forms part of a basis of I^*~lK If the dimension of j(,_1) is greater than ki + k2 H 1- 
kc + c, then we complete the basis of j(,_1) with any linearly independent one-forms 
<x\+1,... ,a\+Tc suchthat 

{o},... ,a\1+1,al,... ,o4+1,... ,a\,... ,ac
kc+1,a?\... ,a$+r«} 

is a basis for J(,_1). 
Repeated application of this procedure will construct a basis for / which is not 

only adapted to the derived flag, but also satisfies the Goursat congruences. 
We note that by assumption, v is integrable mod the last nontrivial derived system, 

/(*1-1). Looking at the congruences (3), we see that any integrable one-form 7r' which 
is congruent to ir up to a scaling factor, 

T' = dt = fic   mod/*'1-1* 

will satisfy the same set of congruences up to a rescaling of the constraint basis by 
multiples of this factor /.  D 

4. PFAFFIAN SYSTEMS GENERATED BY MOBILE ROBOTS 

We now consider some multi-steering mobile robot systems and show that the 
Pfaffian systems generated by the constraints that the wheels roll without slipping 
satisfy the extended Goursat conditions. 

Example 1. Firetruck. 
Consider the example of a firetruck [3]. There are two steering wheels in the system: 
one at the front, for the driver, and another at the rear, for the tiller.  We model 

FIGURE 1. A sketch of the Firetruck, with steering wheels on the front 
and back axles. 

the firetruck as a Pfaffian system generated by the constraints that the three pairs of 
wheels roll without slipping: 

I={a°,a\*2} 
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In coordinates, the constraints can be written as: 

a0   =   sin(0i + <f>i)dx0 - cos($i + <f>i)dy0 

a1   =   sin Oidx! — cos 6\dyi 

a2   =   sin(02 + <t>2)di2 - cos(02 + ^2)^2 

Since the coordinates x0,yo,X2,y2 are determined by Xi,yi,6i,62, we can parame- 
terize the state space by q = {xi,yi,0i,02>^i>^2}* A complement to the system is 
{dxi, d<f>i, dfc}. It can be shown that the constraints are adapted to the derived flag, 

/=   {a°,a\a2} 
/(»)=   {a1} 
Z<2)=   {0} 

and that the systems {I,dxx} and {I^\dxi} are integrable. By Theorem 4, the 
system can be converted into extended Goursat normal form. We refer the reader 
to [3, 9] for the coordinate transformation (into chained form, which is the dual of 
Goursat form), and methods for steering the system. 

A multi-steering trailer system was examined in [11], and it was shown how to 
transform such a system into chained form (which is the dual of Goursat normal 
form) using dynamic state feedback. That is, states were added to the system and 
this augmented system was transformed into the dual of Goursat normal form. In this 
section, we show that this augmentation is not always necessary; some configurations 
of the multi-steering trailer system can be transformed into Goursat form using only 
static state feedback. 

We concentrate on the specific case of a 5-axle system with two steering wheels. 
Assuming that the first axle is steerable, there are four possible positions for the 
second steering wheel. We examine these four cases to show the variety of results 
that can be obtained from a relatively simple system configuration. 

Example 2. 5-axle, 1-2 steering trailer system. 
Consider the case of a 5-axle trailer system with the first two axles steerable. A 
sketch of this system is shown in Figure 2. The state space is parameterized by 
q = {25,1/5,05,04,63,62,61,<f>}, the x,y position of the last axle, the angle of each 
hitch 6i, and the extra steering angle <f>. We note that the x,-,y< positions of the other 
axles can be written in terms of the state variables q. 

The constraints are that each axle roll without slipping: 

a%   =   sin Oidxi —cos 6idyi   t = 1,3,4,5 

a2   =   sin <f>dx2 — cos <f>dy2 

The Pfaffian system is I = {a1,a2,a3,a4,a5}, a complement to this system is given 
by {d<f>,d0i,dxs}, and I has codimension three. 
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FIGURE 2. A 5-axle trailer system with the first two axles steerable. 

This basis is adapted to the derived flag, 

/= {a1, a2, a3, a4, a5} 
/(i) = {a3, a4, a5} 
/<*) = {a4, a5} 
JP> = {a5} 
J« = {0} 

and the congruences are. satisfied with this basis as well: 

da5 - cs{q) a4 A dxs mod I& 
da4 = c4(q) a3 A dxs mod J(2> 
da3 = c3(q) a2 A dxs mod J(1) 

da2 = 02(9) <ty A dxs mod J 
Ja1 = Ci(q) d$i Adxs modi 

We note here that by a simple rescaling of the basis, the functions c,(g) can be 
eliminated to get the Goursat congruences (3) exactly. This is done as follows. First 
define a4 := -c5{q)a4 to get da* = -ä4Adx5 mod H3l Then, taking the derivative 
of Q4, we see that 

da4   =   -cs{q)da4-dcs(q)Aa4 

=   -c5(q)cA(q)a? A dxh mod J(2) 

since Q4 is in J(2). Defining ä3 := cs{q)c4(q)a3, we have da4 = -ä3 A dxs mod J<2>. 
The other constraints are scaled similarly. For the rest of this paper, we will assert 
that the Goursat congruences are satisfied if we have the modified congruences 

>T ,. ■"• »*j-l 

dcA    ^   (T * 

instead of the original congruences (3). 

mod/<•>-">   t = l, 
mod / 

(7) 
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Example 3. S-axle, 1-5 steering trailer system. 
Now consider the same 5-axle system as in the previous example with the first and 
fifth (last) axles steerable, as sketched in Figure 3. The configuration space can be 

FIGURE 3. A 5-axle trailer system with steering wheels on the first 
and last axles. 

parameterized by: q = {x4,y4,es,e4,e3,e2,0i,4>}, the x,y position of the second-to- 
last axle, the angle of each hitch, and the angles of the steering wheels. As before, 
the a;,-, yi positions of the other axles can be written in terms of the coordinates q. 

The constraints are that each axle roll without slipping, 

Q*   =   sin Oidxi - cos 0;<fy,    i = 1,2,3,4 
a    =   sin 4>dxh — cos <j>dy$ 

The Pfaffian system is J = {a1, a2, a3, a4, a5}. A complement to this system is given 
by {d<f>,dOudxA}\ I has codimension three. This basis is adapted to the derived flag, 

{a1, a2, a3, a4, a5} 
{a2, a3, a4} 

{a3, a4} 
{a4} 

{0} 
The congruences are satisfied with this basis as well, 

da4 = c4(q) a3 A dx4 mod 7(3) 

da3 = c3(q) a7 A dx4 mod I™ 
da2 = c2(q) a1 A dx4 mod J(1) 

da1 = a(q) dOi A dx mod / 
da* = cs(q) d<j> A dx4 mod / 

/ = 

/(2) = 

J(3) = 
/«> = 
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and the Pfaffian system can be converted to extended Goursat normal form. 

Example 4. 5-axle, 1-4 steering trailer system. 
We now consider the 5-axle system with the first and fourth axles steerable, as 
sketched in Figure 4.   The configuration space can be parameterized by the x,y 

FIGURE 4. A 5-axle trailer system with the first and fourth axles steerable. 

position of the third axle, the hitch angles 0,-, and the steering angle of the third 
axle <j). We let q represent the state, q = {x3,y3,05,04,03,02,0i,<£}. The other a;,,y, 
positions can be written in terms of q. 

The constraints are that each axle rolls without slipping: 

a'   =   sin Oidxi —cos öidyi   i = 1,2,3,5 
a ,4     _ 

a5} 

=   sin 4>di4 — cos <f>dy4 

The Pfaffian system is thus / = {a1, a2, a3, a4, a5} and a complement to this system 
is: {d<f>,d6i,dx3}. This basis is adapted to the the derived flag, 

I = {a1, a2, a3,   a4, a5} 
/<*> = {a2, a3, 
/P) = {a3} 
J<3> = {0} 

and also satisfies the Goursat congruences: 

da3 = c3(q) a2 A dx3 

da2 = c2(q)a1Adx3 

da1 = Ci(q) dd\ A dx$ 
das = c$(q) a4 A dx3 

da4 = c4(q) d<f> A dx3 

and thus the Pfaffian system can be converted to extended Goursat normal form. 

Example 5. 5-axle, 1-3 steering. 
The final instance of the 5-axle trailer system has the first and third axles steerable, as 
sketched in Figure 5. The state space is parameterized by: q = {ar5, y5,05,04,03,02,0i,<f>), 

mod IM 
mod /(»> 
mod / 
mod /<») 
mod / 
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FIGURE 5. A 5-axle trailer system with the first and third axles steer- 
able. This is the only configuration of the 5-axle system with two 
steering wheels which does not satisfy the conditions for converting to 
extended Goursat normal form. 

and the other a:,-, yt- can be written in terms of q. 
The constraints are that each axle roll without slipping: 

=   sin Bidxi — cos 0,<fy,-   i = 1,2,4,5 a 

a    =   sin (j>dx3 — cos <f>dy$ 

The Pfaffian system is I — {a1,a2,a3,«*4,a8}, and a complement to the system is 
given by {d<f>,d6udx&}. 

This basis is adapted to the derived flag, 

/=   {a\a\ 

/<3> = 

/(3) = 

of a4, a5} 
a4, a5} 

{0} 
however, the congruences are not satisfied: 

da5 

da4 

da2 

da3 

da1 

cs(q) a4 A dx3 

c4(q) a3 Adx3 

c2(g) a1 A dx3 + k2(q) a1 A a3 

c3(q) d<f> A dx3 

ci(q) dB\ Adx3 

mod J<2> 
mod /(») 
mod IM 
mod I 
mod I 

In order to have {I^2\ir} integrable, we must choose ir = dx3 (mod {a4,a8}). This 
will also give us {/°,7r} integrable, but {Z1,*"} is not integrable. Thus, this system 
does not satisfy the conditions for conversion to extended Goursat normal form. We 
will return to this example in the next section. 

5. PROLONGATIONS 

If a Pfaffian system I of codimension k satisfies the necessary and sufficient con- 
ditions for converting into extended Goursat form, then its solution trajectories are 
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determined by k arbitrary functions. However, even if a system cannot be trans- 
formed into Goursat form, its solution trajectories may still have this property. If so, 
then we say that I is absolutely equivalent in the sense of Cartan to the trivial system 
(the system with no constraints) on R*. Although we will not examine the concept of 
absolute equivalence in its full generality, we will give some sufficient conditions for a 
Pfaffian system to have a prolongation which can be converted to Goursat form, and 
thus the solution trajectories of I are determined by k independent functions. 

A general type of prolongation which preserves a one to one correspondence be- 
tween solution trajectories of the original and prolonged system is a Cartan prolon- 
gation. 

Definition 6. Cartan Prolongation. 
Let 7 be a Pfaffian system on a manifold M. A system J on M x Rp is a Cartan 
prolongation of I if : 

(1) *•(/) C J 
(2) For every solution curve c : (-c, c) —► M of I there exists a unique solution 

curve c : (-e, e) —> M x Rp of J with it o c = c. 

If I is equipped with a given independence condition T, then we also require that ir'r 
be the independence condition for J. 

A canonical way to prolong a system with independence condition dt is to take an 
integrable one-form dn in the complement of J, and augment I with the additional 
form dn - ydt, where y is a new coordinate on R. In effect, this adds the derivative 
of n (with respect to the independence condition) as a state variable. As long as all 
solution trajectories are "smooth enough" (we will assume C°°), there will be a one- 
one correspondence between solution trajectories of the original and the prolonged 
system. 

We consider a special type of Cartan prolongation which consists of many of these 
canonical prolongations. 

Definition 7. Prolongation by differentiation. 
Let J be a Pfaffian system of codimension m +1 on Rn+m+1 with coordinates (z, v,t) 
for which dt is an independence condition and {dvi,... , dvm, dt) forms a complement. 
Let &i,... ,6m be nonnegative integers and let b denote their sum. The system I 
augmented by 

dv-i. - v\dt,    ... ,   rfvj1"1 - v^dt, 
dv2 - v\dt,    ... , dv^-1 - v%dt 

dvm-vldt,   ..., ..., dv*?-l-vfcdt, 

is called a prolongation by differentiation of I. The augmented system is defined on 
TBn+m+fc+l 
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We note here that since the original system and independence condition corre- 
sponded to a set of first order ordinary differential equations, the prolonged system 
has the same independence condition and also corresponds to a set of first order 
ordinary differential equations. 

We can now give sufficient conditions for a Pfaffian system to have a prolongation 
which is equivalent to extended Goursat form. 

Theorem 5. Conversion to Goursat form using prolongation by differen- 
tiation. 

Consider a Pfaffian system I — {a1,... ,oB} on Rn+m+1 with independence con- 
dition dz° and complement {dvi,... ,dvm,dz0}. If there exists a list of integers 
61,... , bm such that the prolonged system 

!={   a1,'... , an, dvx - v\dz°,... , rfw*1"1 - v^dz0, 
...,dvm- vldz°,... , dvt-1 - vb-dz0} 

satisfies the condition that {I^k\dz0} is integrable for all k, then I can be transformed 
to extended Goursat normal form using a prolongation by differentiation. 

Proof. The proof is by application of Theorem 4 to the prolonged system /.   D 

Although this is a very specific form of prolongation of a Pfaffian system, and the 
conditions of the theorem must be checked in a specific coordinate system with a given 
independence condition, there do exist practical systems which can be converted into 
extended Goursat form using this type of prolongation. 

Example 6. S-axle, 1-3 steering, revisited. 
We return to the 5-axle trailer system with the first and third axles steerable, which 
did not satisfy the conditions for conversion to extended Goursat form. 

Recall that the derived flag was of the form: 

I = {a1, a2,   a3, a4, a5} 
JW = {a2,          a4, a5} 
7<2) = {a5} 
J<3> = {0} 

but that the congruences were not satisfied: 

dah = c5(q) a4 A dx3 mod 1^ 
da4 = C4(q) a3 A dx3 mod JM 
da2 = c2(g) o1 A dx3 + k2(q) a1 A a3 mod 7(1) 

da3 = cs(q) d<f> A dx3 mod I 
da1 = ci(q) dB\ Adx3 mod I 

We can look at the equations for the exterior derivatives of the constraints to see 
if after prolongation, the augmented Pfaffian system will satisfy the conditions for 
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conversion to extended Goursat form. We see that rr = dxs will give us {I^
2
\TC} 

integrable. However, {I^\dx6} is not integrable since da2 has a term £2(9) Q1
 A a3. 

If either a1 or a3 could be added to I^\ that term would no longer cause a problem. 
We note that if a1 were added to 7(1), then da2 = 0 mod J(1) and we will still have 
the same problem, except now with 1^. If we can somehow add a3 to I^\ it appears 
that the conditions of Theorem 4 will be satisfied (the only thing remaining to be 
checked is that da3 = 0 mod a2,a3,a4,o5,<fxs.) 

We prolong I by differentiation, and augment it by the additional form u> = d<f> — 
vdx3. The derived flag of the augmented system is: 

/= {a1, a2,   w, a3, a4, a5} 
JW = {a2,        a3, a4, a5} 

...„.                       7(2)= K, a5} 
J<3> = {a5} 
/W = {0} 

and the systems {/W,<fx3} are integrable for all k, as can be seen from looking at 
the Goursat congruences, 

da5 = cs(q) a4 A<fx3 mod/^ 
da4 = c4(q) a3 A dx3 mod J<2) 
da3 = c3(q) du A dx3 mod J^ 

du> = Cw(q) dv A dx3 mod J 
<fa2 = c2(q) a1 A <fx3 mod jM 
da1 = ci(?) <föi A dx3 mod J 

Thus, the prolonged system / can be converted into extended Goursat normal form. 
This extension is shown in [11], as are methods for steering this type of system. 

6. CONTROL SYSTEMS 

As we mentioned in the introduction, control systems are a special type of Pfaffian 
system, and therefore all of the results presented thus far can be specialized to control 
systems. Most of the previous work analyzing nonlinear control systems has been 
from the vector field point of view, taking a system x = /(x) + g\(x)ui + - • • flrm(x)um, 
and looking at properties of the vector fields /,<?,-. The Pfaffian systems formulation 
is the dual of this. 

Definition 8. Control System. 
A control system x = /(x,u) with the state x € Rn, the input u € RTO, and the 
derivative of the state taken with respect to time t € R, generates a Pfaffian system 
JonRn+m+1 

I = {dxi-f(x,u)dt:i = l,...,n} (8) 
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with complement {dui,... ,dum,dt). The natural independence condition to choose 
is dt, since we want dt ^ 0 along all solution trajectories of the system. 

Any Pfaffian system / of codimension m + 1 on R^"1*1 with coordinates (x,u,t) 
can be called a control system if it has a set of generators of the form (8). 

Brunovsky showed that any controllable linear system x = Ax + Bu with x € R", 
u € Rm can be converted to a "canonical" form given by 

x\ = ui x\ = u2      ■••      i? = um 
X' 1 = «.1     *»2 __ —2 «im _ -*m 

L»2 "~ •l'J «fcO ~" *1 

.m _ m (9) 

T1  — T1 Xki   — Xk!-1 

• 2   2 
xk2 — xh-l 

with n = ki + ••- -\- km. A control system is said to be linearizable if and only 
if it can be converted to Brunovsky form using a nonlinear coordinate change and 
state feedback. Since Brunovsky linear form for a control system is a special case 
of extended Goursat normal form (2) with dz° = dt and zf1+J = u,-, the theorems 
for transforming to Goursat form can be specialized to give conditions for exact 
linearization. 

Theorem 6. Exact Linearization [5]. 
If a control system I defined on Rn+m+1 has a set of generators {a* : j = 1,... , m; i = 

1,... , Sj} such that for all j, 

dc4   =   -aj+1A«ft     mod/<•>-■>   « = 1,...,«,--1 
do*.   £   0 modi ^UJ 

then there exists a set of coordinates z such that I is in Brunovsky normal form, 

I = {dt{ - z}
i+1dt : j = 1,... ,m;t = 1,... ,Sj}. 

An algorithm for converting systems to Brunovsky normal form is also given in [5], 
and it is shown that if the control system is time-invariant and affine in the inputs, 
then the resulting feedback transformation is also autonomous and input-affine. 

The control systems version of Theorem 4 is given by 

Theorem 7. Exact Linearization [8]. 
A control system I can be converted to linear form if and only if{I^k\dt} is integrable 

for every k. 

By way of example, we examine a control system which is not linearizable but can 
be converted to Goursat normal form. The transformation scales time by a function 
of one of the states. 
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Example 7. Goursat normal form for a control system. 
Consider the single-input control system [4], 

X\     =    X2 + X3 

X2    =    X3 

X3    =    U 

This control system generates a Pfaffian system, 

I = {dxi - (x2 + x3)dt,dx2 - x3dt,dx3 - udt} (11) 

I is of codimension two on R5 with coordinates (x,u,<). The derived flag of / is 

/={a\a2,a3} 

7(2)={a1} 

/(3) ={0} 

where the one-forms adapted to the derived flag are given by 

a1   =   dxi — 2x3dx2 + (x3
2 — x2)dt 

or     =   dx2 — x3dt 

a3   =   dx3 — udt 

Note that this is not the basis of (11) which generated I.   Since {I^2\dt} is not 
integrable, the system is not feedback linearizable by Theorem 7. 

We find however that the Goursat congruences (1) are satisfied, for 7r — dr = 
dt — 2dx3: 

da1   =   a2 A dr 
da2   =   c(u) a3 A dr 
da3   =   c(u) du A dr      mod a3 

Thus, there does exist a transformation $(x, u, t) — (z, v, r) to Goursat normal form, 
which is given by 

T   =   t — 2x3 
u 

v   = 
l-2u 

Z\     =     X3 

Z2    =    X2 — X3 

z3   =   x\— 2x2x3 + -x3 
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and it is easily checked that 

dz\ 
~d7   =   V 

dz2 

~d7 = Zl 

dz3 

*    =   Z2 

This formulation of the system makes it simple to analyze the possible trajectories 
of the system in state/time space. Also, a controller could be designed using linear 
techniques which would be valid in certain regions of the state space. 

Converting control systems to Goursat normal form may not be the most useful 
thing to do. However, linearizing control system using dynamic extension is a problem 
that has been studied extensively. A dynamic extension of a control system is an 
augmented system with integrators added to the inputs; for example, a simple first- 
order dynamic extension is given by: 

x   =   f(x,u) 

ük   -   v 

where an integrator is added to the kth input channel. 
The prolongation by differentiation which we defined in Section 5 is exactly the 

dual of dynamic extension in the language of forms. Thus, we have the control 
systems version of Theorem 5: 

Theorem 8. Linearization by dynamic extension. 
Consider a control system I on Rn+m+1 with coordinates (x,u,t), independence con- 
dition dt, and complement {dui,... ,dum,dt}. If there exists a prolongation by dif- 
ferentiation of dimension b = bi + • • • + bm such that the augmented system 

I = {   a* = dii- f'(x,u)dt:   t'=l,...,n; 
ßk^du)-l-u)dt:      j = l,...,m;* = 0,...,&,} 

on Rn+m+*+i satisfies the condition {/W, dt) is integrable for every k, then the orig- 
inal system I is linearizable by dynamic extension. 

Proof. Apply Theorem 7 to the extended system /.   D 

This theorem is similar to the one stated by Charlet, Levine, and Marino [4] which 
also gave sufficient conditions for linearizing systems by dynamic extension. Their 
conditions also relied on the existence of some integers bi which are the number of 
integrators added to the »** input channel. However, the existence of a dynamic 
extension of order b = (61,... ,6m) which is linearizable does not imply that the 
conditions of their theorem are satisfied for that 6; whereas if there exists a dynamic 
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extension of order 6 = (61,... ,6m) which can be linearized, our conditions will always 
be satisfied for that 6. 

We present a simple example to show how the theorem can be applied to linearize 
control systems using dynamic extension. 

Example 8. A control system satisfying the conditions of Theorem 8 but 
not the conditions of [4]. 
Consider a 4-state, 2-input control system: 

Xi = £2 + X3U2 

X2 = X3 + X\U2 

£3    =    «1 + X2«2 

x4   —   u2 

The corresponding Pfaffian system on R7 is 

/ = {<fii — (x2 + x3u2)dt, dx2 — (S3 + xiu2)dt, dx3 — (ui + x2u2)dt, dx4 — u2dt} 
(12) 

with independence condition dt and complement {duitdu2,dt}. The derived flag has 
the form: 

/ =       {a1, a2,   a3, a4} 
P>=   {a1, a4} 
I&=   {0} 

The one-forms a' which are adapted to the derived flag are not the same as those of 
(12) which generated /, 

a1 = dxi — x2dt 

a2 = dx2 — (x3 + xiu2)dt 

a3 = dxz — (ui + x2u2)dt 

a4 = dx4 + x3dx2 — x$dt 

The structure equations are fairly simple to find, 

da1   =   -a2 A dt 

da2   =   — X\du2 A dt 

da3   =   — du\ Adt — x2du2 A dt 

da4   =   -a2 A a3 + (x3 + Xiu2 - l)a3 A dt — (x2u2 + Ui)a2 A dt 

and we note that {I^\dt} is not integrable, thus the system is not linearizable by 
static state feedback. 

Now consider a prolongation by differentiation of / on R10, 

i = {i,ß\ß2,ß3} 
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with the additional one-forms 

ß1 = du2-vdt 

ß2 = dv-wdt 

ß3   =   dw-zdt 

and additional coordinates v,w,z. A complement to I is {dut,dz,dt}. The derived 
flag of the extended system has the form 

/= {u>\ u;2, *3,   u>\ß\ß2,ß3} 
/(» = {«>,«», u\ß\ß2} 
7<2> = {a,1, a;4, ß1} 
/(3> = {u>4} 
J<4> = {0} 

where the one-forms adapted to the derived flag are 

u;1   = dxi — u2dx2 + (u2
2xi — x2)dt 

u;2   = dx2 — (u2X\ + xz)dt 

u,3   = dx3 — (ui + u2x2)dt 

uA   = dxi — u2dt 

The structure equations are 

du1   = (-1 + u2
3 + v) u>2 A dt  mod/(2) 

dJ*   = -u>3 A dt  mod J(1) 

du?   = —dui A dt mod J 

<L>4   = -/31 A dt 

<*/?>   = -ß2 A <ft 
dß2   = -^3A(ft 

<f£3   = -dz A A 

from which it is easily seen that each {I^\dt} is integrable, hence the prolonged 
system / can be feedback linearized. 

We note that although this example can be linearized by dynamic extension, it is 
shown in [4] that it does not satisfy the sufficient conditions given in that paper. 

Remark 2. Dynamic State Feedback. 
We have shown that a prolongation by differentiation of a control system corresponds 
to a dynamic extension.  A general dynamic state feedback corresponds to adding 
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some states to the system and putting feedback around them, such as 

x   =   f(x,u) 

z   =  g(x,z,v) 

u   =   ß(x,z,v) 

This general form does not correspond to a Cartan prolongation, since there may 
not be a one-one correspondence between trajectories of the extended system and 
trajectories of the original system. This is especially obvious if the added z states 
have their own dynamics, independent of x, such as in the example due to [12] 

x   =   f(x,u) 

z\    =   *2 

 :-~—:™ £2"'^^'"*="^""     '"  

u   =   ß{z)v. 

where harmonics are added in the dynamic state feedback. This example corresponds 
to a prolongation of the original system, but not a Cartan prolongation, since there 
are many possible trajectories in (x, z) space for every trajectory in x, depending on 
the initial conditions of the z coordinates. 

7. CONCLUSIONS 

In this paper, we presented the method of exterior differential systems for analyzing 
nonlinear systems. We have given necessary and sufficient conditions for converting 
Pfaffian systems to Goursat normal form, and we contributed sufficient conditions for 
converting systems to Goursat form using prolongations. In addition, we showed how 
the techniques that we described for general Pfaffian systems could be specialized to 
control systems, and the conditions for exactly linearizing systems could be restated 
in the language of forms. Since dynamic extension is the dual of prolongation by 
differentiation, our theorem for converting Pfaffian systems to Goursat form using 
prolongation could be specialized to give conditions for converting control systems to 
Brunovsky form using dynamic extension and nonlinear feedback. We showed that 
these conditions are closer to necessary and sufficient than those which exist in the 
literature. 

Future directions of research include investigating other types of prolongation be- 
sides prolongation by differentiation as well as algorithms for systematically prolong- 
ing Pfaffian systems to achieve equivalence to Goursat forms. 



28 TILBURY AND SASTRY 

REFERENCES 

1. R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths. Exterior 
Differential Systems. Springer-Verlag, 1991. 

2. L. Bushnell, D. Tilbury, and S. S. Sastry. Extended Goursat normal forms with applications 
to nonholonomic motion planning. In Proceedings of the IEEE Conference on Decision and 
Control, pages 3447-3452, San Antonio, Texas, 1993. 

3. L. Bushneil, D. Tilbury, and S. S. Sastry. Steering three-input chained form nonholonomic sys- 
tems using sinusoids: The firetruck example. In Proceedings of the European Control Conference, 
pages 1432-1437, Groningen, The Netherlands, 1993. 

4. B. Charlet, J. Levine, and R. Marino. Sufficient conditions for dynamic state feedback lineariza- 
tion. SIAM Journal of Control and Optimization, 29(l):38-57, 1991. 

5. R. B. Gardner and W. F. Shadwick. The GS algorithm for exact linearization to Brunovsky 
normal form. IEEE Transactions on Automatic Control, 37(2):224-230,1992. 

6. R. M. Murray. Applications and extensiqn^_p£ goursat normal form to .control of nonlinear 
systems. In Proceedings of the IEEE Conference on Decision and Control, paces 3425-3430 
1993. 

7. W. F. Shadwick and W. M. Sluis. Dynamic feedback for classical geometries. Technical Report 
FI93-CT23, The Fields Institute, Ontario, Canada, 1993. 

8. W. M. Sluis. Absolute Equivalence and its Applications to Control Theory. PhD thesis University 
of Waterloo, 1992. 

9. D. Tilbury and A. Chelouah. Steering a three-input nonholonomic system using multirate con- 
trols. In Proceedings of the European Control Conference, pages 1428-1431, Groningen, The 
Netherlands, 1993. 

10. D. Tilbury, R. Murray, and S. Sastry. Trajectory generation for the N-trailer problem using 
Goursat normal form. In Proceedings of the IEEE Conference on Decision and Control pages 
971-977, San Antonio, Texas, 1993. 

11. D. Tilbury, O. Sordalen, L. Bushnell, and S. Sastry. A multi-steering trailer system: Conversion 
into chained form using dynamic feedback. Technical Report UCB/ERL M93/55, Electronics 
Research Laboratory, University of California at Berkeley, 1993. 

12. M. van Nieuwstadt, M. Rathinam, and R. M. Murray. Differential flatness and absolute equiv- 
alence. Technical report, California Institute of Technology, March 1994. 


